QAZZU warrai

Anatolian and Indo-European Studies in Honor of

Kazuhiko Yoshida

edited by

Adam Alvah Catt
Ronald I. Kim
Brent Vine

Beech Stave Press
Ann Arbor • New York
Table of Contents

Qazzu Warrai

Preface ... vii
Bibliography of Kazuhiko Yoshida ... ix
List of Contributors .. xvi

Timothy G. Barnes, Old Persian μενεμανι 1

Andrew Miles Byrd, Motivating Lindeman’s Law 6

Adam Alvah Catt, Vedic vrādh- and Avestan uruūād-/uruūāz- 21

Paola Dardano, Stilistische Merkmale religiöser Textsorten im Hethitischen: Hendiadyoin und Merismus 34

Joseph F. Eska, Vergiate .. 50

Petra Goedegebuure, The Old Hittite genitive plural ending -an 59

David M. Goldstein, The synchrony and diachrony of the Greek dative of agent ... 73

Laura Grestenberger, On Hittite iškallāri and the PIE “stative” 91

Olav Hackstein, From possessive to agentive:
 The emergence of agentivity in possessive adjectives 106

Stephanie W. Jamison, Hidden in plain sight: Some older verb endings
 in the Rig Veda .. 123

Jay H. Jasanoff, Stative-intransitive aorists in Hittite 130

Yusuke Kanazawa, La correlazione tra il raddoppiamento clitico
e il cambiamento dell’ordine delle parole nel sardo 140

Ronald I. Kim, Middle preterite forms in Tocharian A? 152

Jared S. Klein, Homeric Greek νν ... 168

Werner Knobl, Minimal phonetic change: New comments on RV 10.129 177

Masato Kobayashi, Adnominal locatives in Classical Armenian
 and typological harmony ... 192

Shigeaki Kodama, The historical background and development
 of Latin argentum ‘silver’ and its cognates 208
Table of Contents

Hiroshi Kumamoto, More on the injunctive in Khotanese 213
Melanie Malzahn, How the Indo-Europeans managed TO OVERCOME and
TO GET OLD: The behavior of telic roots in PIE .. 225
H. Craig Melchert, Solar and sky deities in Anatolian 239
Mitsuo Nakamura, Zur hurritischen “vierten Tafel des Ḫuwawa” 250
Kanehiro Nishimura, A linguistic approach to the prayer to Venus
in Lucretius’ first proem: Māvors and poetic tradition 256
Norbert Oettinger, Zum Verhältnis von Medium und Aktiv im Hethitischen
und seiner Vorgeschichte .. 267
Hirotoshi Ogihara, Remarks on Tocharian B smām 278
Terumasa Oshiro, A note on the SÜDBURG
Hieroglyphic Luwian inscription .. 289
Georges-Jean Pinault, Hittite ḫaššu- ‘king’ and the Indo-Iranian
āśura-problem ... 292
Massimo Poetto, Hittite palwa- ‘blister, pustule’ 303
Elisabeth Rieken, Zurück in die Zukunft: Eine neue luwische Etymologie 309
Yasuhiko Sakuma, Another example of Hittite šament-? 319
Zsolt Simon, Zum Vokalismus des hieroglyphen-luwischen Zeichens tā (*41) .. 324
Thomas Steer, Some thoughts on the etymology
and derivational history of Greek ἄνεος .. 334
Guðrún Þórhallsdóttir, Old Icelandic í rokú ‘continuously’ 347
Elizabeth Tucker, Old Indo-Aryan feminines in -var- 358
Aurelijus Vijūnas, Revisiting the preterite of PGmc. *bujan-:
Old English <bun> ... 370
Brent Vine, Faliscan foied, Latin bodiē ‘today’, and Italic *d(i)je- 380
Michael Weiss, Čim haxa haše baraiti? .. 393
Ilya Yakubovich, Showing reverence in Lydian 399
Yoko Yamazaki, The root vocalism of Lith. dāvē, dial. dève ‘gave’ revisited ... 410
Yutaka Yoshida, The Sogdian articles from the viewpoint
of general linguistics ... 420
Marina Zorman, Apodotic ‘and’ in Hittite, Greek, Latin, etc.:
Yet another candidate for an Indo-European mirage 432
Index Verborum .. 443
Motivating Lindeman’s Law

ANDREW MILES BYRD

1 Overview of the problem

In Vedic Sanskrit, one finds disyllabic variants of monosyllabic forms beginning with the onset sequence consonant (C) + glide (U): besides svāh ‘own (nom.sg.)’ one finds suvāh; besides dyām ‘sky (acc.sg.)’ one finds diyām. These stems, however, do not illustrate such alternation between CU and CVU when in polysyllabic forms; thus, svānām ‘own (gen.pl)’ but no *suvānām, diyūbhīḥ ‘sky (instr.pl)’ but no *diyūbhīḥ (Barber 2013:48). This pattern, first noted by Lindeman (1965:61–2) and therefore now known as “Lindeman’s Law” (LL), has been accepted by most scholars in the field, e.g. Schindler (1977:64) and Mayrhofer (1986:183–4), though Collinge (1995:28–9) is hesitant.

While some, such as Sihler (1971 and 2006) and many within the Leiden School (cf. Beekes 2011:139), have argued for these alternations in syllabicity to be the result of Indic-internal processes, LL is considered by most to be canonical within our contemporary understanding of PIE phonology. Indeed, as Barber (2012:203) correctly points out, its archaic nature is evident within Vedic Sanskrit itself, for “practically all well-attested disyllabic examples exhibit highly restricted, and in some cases demonstrably formulaic, distributions in Vedic verse or prose. None of this is terribly surprising, if one starts from the assumption that this semivowel alternation is ultimately inherited from Indo-European.” Of course, as is well known, evidence of its IE provenance exists well beyond Sanskrit, with these disyllabic Lindeman variants (LVs) being found in a number of other IE daughter languages. The opaque, seemingly random distribution of these variants suggests that, as in Sanskrit, LL was an optional rule in PIE as well. Examples of LL (though by no means exhaustive) are given in Table 1 below.

1It is with great pleasure that I write this paper for Kazu Yoshida, a scholar who has contributed much to our knowledge of Indo-European and Anatolian in particular, with ever a mindful eye about the linguistic reality of his reconstructions. I am indebted to Brenna Reinhart Byrd, Dieter Gunkel, Jared Klein, Ryan Sandell, and Brent Vine for their helpful comments; all errors are my own.
Motivating Lindeman’s Law

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>‘sky god’</td>
<td>*diēus</td>
<td>Gk. Zeús, Hitt. šiunaš, Lat. Iu-piter</td>
<td>*diēus</td>
<td>Skt. diyāush, Lat. diēs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘would be’</td>
<td>*h sièht</td>
<td>Skt. syát, Av. xīiāt</td>
<td>*h sièht</td>
<td>Skt. syát, Goth. sijai, OLat. siet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘winter’</td>
<td>*g`įōm</td>
<td>YAv. ziāā</td>
<td>*g`įōm</td>
<td>Gk. žiow, Arm. jiwn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘two’</td>
<td>*duōh₁</td>
<td>Skt. dvā, OIr. dā</td>
<td>*duōh₁</td>
<td>Skt. dvā, Gk. ḍowo, Lat. duō</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘on you’</td>
<td>*tuoį</td>
<td>Skt. tvē, Gk. σοῖ</td>
<td>*tuoį</td>
<td>Skt. tvē</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘dog’</td>
<td>*kuō</td>
<td>Skt. śvā, OIr. cú, Lith. šuō</td>
<td>*kuō</td>
<td>Skt. śvā, Gk. κौω, OIr. cú</td>
</tr>
</tbody>
</table>

Table 1. Examples of Lindeman’s Law.

While LVs do exist for monosyllabic forms containing onsets of C + Nasal (N) and C + Liquid (L), particularly in Italic,2 these are much less common. Aside from the long form of ‘human’, *gʰнима́ (Lat. homō, OE guma; cf. *gʰнима́ ‘human’ > Lith. žmūdą), broader instantiations of the rule applying to monosyllables with onsets of the shape */Cr-, Cl-, Cm-, Cn-/ are quite difficult to reconstruct for the proto-language. For this reason, I will assume for PIE a more restricted version of the law in question and posit that the broader formulation of the rule is a post-PIE development.

(1) Lindeman’s Law³

\[\emptyset \rightarrow U_1 / \#C_1U_1V(C_o)\# (optional) \]

In PIE, monosyllabic words beginning with the sequence *CUV- could optionally be pronounced as *CUUV-, in which the features of the epenthetic vowel are copied from the immediately following glide.

In this paper, I will attempt to identify why LL initially came into being, which will shed light on its optional nature. I will begin by revisiting Schindler’s widely followed

1Possible examples include *mr-ei- ‘sea (oblique)’ > *mrre-i- > mare- → Lat. mare (cf. OIr. mnáir; Nussbaum 2004), *krō ‘portion’ > *krō > Lat. carō ‘meat’ (Weiss 2011:106), *bhe`ji’ti ‘is warm’ (cf. Skt. śradd- ‘autumn’) > *bhi’ti > *bhi’ti > calet (Vine 2011:272), and *gʱeusāh₂ > *gʱeuusāh₂ > Boeotian Gk. ἄκα (Jasanoff 1989; cf. OIr. mná, Ved. gude-pati- ‘husband of a divine wife’).

formulation of LL and demonstrate that his view is unsatisfactory. I will then turn to another optional phonological rule that is reconstructable for PIE, monosyllabic lengthening, and argue that the two processes are different responses to satisfying the Minimal Word Requirement (MWR) at an early stage of PIE. I will conclude by saying a few words about the loss of the MWR and the maintenance of extrametricality in the Indo-European daughter languages.

2 Revisiting Schindler 1977: Sievers’ Law ≠ Lindeman’s Law

Schindler’s 1977 formulation of LL has unquestionably been the most widely followed view since its publication. He couched his theory in a larger discussion of Sievers’ Law (SL), a process by which a high vowel is inserted in the sequences */-VRCU₁V-/ and */-VCU₁V-/. For Schindler, LL and SL were instantiations of the same process inherited from PIE, since both targeted onsets of the shape */CU in the final syllable of a word (marzyah# → martyah# ‘mortal’ beside tyat# → tiyat# ‘that’). Schindler believed that Lindeman variants surfaced “als Folge des Satzsan-

bles (*kyō drah2t ‘That dog ran’) but as *kuyō after heavy ones (*sēnos kuyō drah2t ‘The old dog ran’).

(2) Sievers’/Lindeman’s Law (Schindler 1977:64)

\[
\begin{bmatrix}
\text{[–cons]} & \rightarrow & [+\text{syll}] & [f_{\mu}[–\text{syll}]] & [–\text{syll}]_{0}\#
\end{bmatrix}
\]

A glide becomes a high vowel when it follows an onset consonant and precedes a vowel, though only when this sequence is preceded by a heavy syllable.

If SL were a postlexical rule in PIE as per Ringe 2017:18 and Byrd 2015:193–207, a sandhi extension of SL would in fact be expected, as postlexical rules are not restricted to words and therefore apply across word boundaries. However, such an extension of SL would only be anticipated if we viewed SL/LL as a rule that targets *CU-onsets. As I have discussed previously (Byrd 2015:191), it

5Examples of SL are found in a number of IE languages, including Skt. mariya- ‘mortal’ (< marīya-), Goth. hairdeis ‘shepherd’ (< *berdējis), Hitt. arduameni ‘we cut with a saw’ (< *ard-weni; Melchert 1994:57–8), and likely a number of Latin stems within the fourth conjugation, such as uɟtive ‘perceive’ (< *uɟ-t-ive; cf. Weiss 2011:40; contrast capere < *kap-ie-).
would be difficult to make such a claim, for there is no reason to believe that a sequence *CU-, which is found in a sizeable number of roots and words in PIE (*tiyug*- ‘withdraw’, *tyrēk- ‘cut’, etc.), was disfavored in PIE onsets (cf. Collinge 1985:165). Indeed, if we examine PIE phonotactics more broadly, the number of types of *CR-roots in PIE is large, with at least 73 different *CR- onsets reconstructable for the proto-language (Byrd 2015:279–80). In short, of all consonant clusters reconstructed for PIE, it appears that *CR- onsets were the least marked, making it highly unlikely that either SL or LL were directly motivated by the avoidance of *CU- onsets.

For this reason (and others), in Byrd 2010 and Byrd 2015 (chapter 5), I proposed that SL was motivated by the avoidance of superheavy syllables at the postlexical (sentential) level. At first glance, it is not immediately obvious why a superheavy syllable should ever have surfaced in cases of SL, for one would expect a putative PIE */kērd-/ ‘herdsman’ (> Goth. hairdeis) to have syllabified as *[kér]e[d/i]os]e through ONSET MAXIMIZATION (cf. Kobayashi 2004:23). However, as discussed in Byrd 2015: 244–53, it seems that in PIE, at least in the initial stages of a phonological derivation, speakers parsed syllables by morpheme, which would explain why PIE syllabified */VC2C2V/ as *[VC1]e[C2V]e, even when C1C2 was a perfectly licit onset cluster.7 Thus, PIE */kērd-/io-s/- ‘herdsman’ was initially syllabified as *[kér]e[i]os]e in order to align the medial syllable boundary with a morpheme boundary.8 Later within the derivation, at the postlexical level, *[kér]e[i]os]e is resyllabified as *[kér]e[d/i]e[i]os]e to avoid a superheavy syllable, with *[kér]e[d/i]e[i]os]e (candidate [a] in Table 2 below) being preferable to *[kér]e[d/i]e[i]os]e (candidate [b]) as it also lacks a complex onset.9

6Typically languages will maximize onsets whenever possible; cf. English ac.tress (beside trek, no *ktrek), mael.strom (beside strum, no *streum).
7Thus, */h2e:k-ro-s/- > *[h2ēk]e[i]os]e ‘pointy’ alongside forms such as */kroθu-diēi/ ‘she loosens’.
8In order to satisfy the constraint ALIGN-MORPH-L: “The left edge of a morpheme coincides with the left edge of a syllable.”
9This and past analyses of SL (Byrd 2010 and 2015) have been done within an Optimality Theoretical framework (Prince and Smolensky 2004), specifically Stratal OT (Bermúdez-Otero 2003), though they in no way depend on it. The constraints used here have been taken from Byrd 2015, to which I refer the reader for further discussion, constraint-ranking justification, and references. The constraints are:

1. DEP(F)\[__\]: Every feature in the output has a correspondent in the input.
2. *SUPERHEAVY: No syllable may consist of three or more morae.
3. FAITH(σ): If \(x_1\) belongs to \(σ\) in the input, and \(x_2\) has an output correspondent \(x_3\), \(x_0\) must belong to syllable \(σ_0\) that corresponds to \(σ\). (Do not alter the syllabification of the base form.)
4. *COMPLEX-ONSET: Onsets may not contain more than one consonant in the output.
5. DEP-V: Every vowel in the output has a correspondent in the input.
6. NO-SPREAD(⟨F⟩, seg): Feature-segment associations in the output must be reflected by the corresponding elements in the input.
4.2 Emoticons

4.2.1 “Normal” Emoticons

First column shows the commands, the second the (optional) parameter(s), the third the default-output (the only command with a mandatory argument is \NiceReapey). Doing so, however, becomes increasingly di-

Table 2. Sievers’ Law with PIE */kərdʰjəʊs/ ‘herdsman’ (Byrd 2015:203).

<table>
<thead>
<tr>
<th></th>
<th>[kərdʰ]</th>
<th>[jəʊs]</th>
<th>Dep(F)</th>
<th>*SUPERHEAVY</th>
<th>FAITH(σ)</th>
<th>COMPLEXONSET</th>
<th>Dep-V</th>
<th>No-Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>[kə̀r̥dʰ]</td>
<td>[dʒəʊs]</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>[kə́r̥dʰ]</td>
<td>[dʒəʊs]</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>[kə́r̥dʰ]</td>
<td>[dʒəʊs]</td>
<td></td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>[kə́r̥dʰ]</td>
<td>[dʒəʊs]</td>
<td></td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Non-application of Sievers’ Law in */séns ƙyōns/ ‘old dog’.

<table>
<thead>
<tr>
<th></th>
<th>[sè]</th>
<th>[nɔs]</th>
<th>ƙyōns]</th>
<th>Dep(F)</th>
<th>*SUPERHEAVY</th>
<th>FAITH(σ)</th>
<th>COMPLEXONSET</th>
<th>Dep-V</th>
<th>No-Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>[sè]</td>
<td>[nɔs]</td>
<td>ƙyōns]</td>
<td></td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>[sè]</td>
<td>[nɔs]</td>
<td>ƙyōns]</td>
<td></td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>[sè]</td>
<td>[nɔs]</td>
<td>ƙyōns]</td>
<td></td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>[sè]</td>
<td>[nɔs]</td>
<td>ƙyōns]</td>
<td></td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This analysis of SL cannot extend across word boundaries, at least not to the desired monosyllables containing *CU- onsets, as Sievers’ Law is spurred by the avoidance of a superheavy syllable, not the avoidance of a *CU- onset. A violation of FAITH(σ) in candidate (a) *[sè][nɔs][ƙu̯][uɔ][uɔ] would result in maintenance of the more faithful candidate (b) *[sè][nɔs][ƙu̯].

Of course, I acknowledge that perhaps not everyone follows this analysis of SL, with many continuing to subscribe to Schindler’s belief that LL was a sandhi subtype of SL. Doing so, however, becomes increasingly difficult should one consider the following three problems.

The first lies in the restriction of LL to monosyllables. As noted above, Schindler proposed a unification of SL and LL, restricting the process to target only onsets

*Should one follow the formulation of SL as given in Byrd 2010 and 2015, we would actually expect instances of SL in collocations such as */hù'
of the shape */CU*- in the final syllable of a word. Of course, it is true that SL often
does not apply word-medially, as seen in the longer vṛddhi formations vāśvānārā-
`pertaining to all men’ (*/vāśvānārā*-) and mādhyaṁdina- ‘belonging to midday’
(*/mādhyaṁdina*), an absence nicely explained by Schindler’s formulation (Schindler
1977:60–1). However, as discussed in Barber 2013:48–51, SL does apply frequently
in word-medial position. While forms such as máṃśyasya ‘of a mortal’, kāvyaśya ‘in-
spired, poetical (gen.sg.)’ may be explained through analogical leveling, it is more
difficult to make such a claim for -nu- verbs such as aśnuvānti ‘they obtain’. In addi-
tion, its non-application in longer vṛddhi formations is not compelling evidence of
its restriction to word-final position, given that SL is also absent in shorter vṛddhi
formations where vowel epenthesis is expected (following Schindler’s formulation
of SL), such as paidvā- ‘belonging to Peedu’ (*/paidvā*) and tāṭyā- (*/tāṭyā*) ‘pat-
ernal’. If LL truly is a subtype of SL, then it should behave just as SL does, with
application in both underlying monosyllables and polysyllables, at least to some ex-
tent. But we don’t seem to find these same types of exceptions to LL—forms such
as dyūbhij remain resolutely unlengthened, and any (of the few) instances of length-
ened underlying polysyllabic forms belong to paradigms with LL monosyllables or
are compounded to such forms (Barber 2012:183).

A second, more serious problem for Schindler’s sandhi explanation of LL stems
from what the theory would predict about the distribution of Lindeman variants.
This view, that LL occurred in monosyllables after words ending in a heavy syl-
lable, predicts that Lindeman variants should appear anywhere but sentence-initial
position. As Barber (2012) carefully demonstrates, we do find partial complemen-
tary distribution in the Rigveda of a number of forms that show alternation (such
as, but not limited to, dyāuh./diyāuh., dyām/diyām, and dvā-/duvā-). However, these
forms are distributed in the opposite fashion from what one would expect following
Schindler’s understanding of LL, with the disyllabic variants nearly always appear-
ing in line-initial position, a fact which cannot be explained by meter alone (Barber
2012).

A third problem lies in the structural description of Schindler’s rule itself. As is
well known, Schindler demonstrates that SL was blocked in words of the shape
*/VTTUV/ (e.g. */tetsio-/), where T = any obstruent, which he attributes to the syl-
labification */-VTTU[V]/ (i.e. */tets jo-/). Evidence of non-application includes Skt.
matsya-, Av. masya- ‘fish’ (< */matsya, *matsiya-/), Gk. (Ion.) δίξος ‘double’ (< */dikb-
,iós, * dikb,iós; cf. διγθά ‘in two’),11 and Skt. absolutes of the shape */-tuV/ (Skt. -tvā,
-tvā, -tvāyā), which never scan as */-tuuV/ (Skt. *-tuvā, *-tuvā, *-tuvāyā). However, as
I argue in Byrd 2013:191–2, the syllabification of */tetsio- as */tets jo- is problematic, as
there is no direct evidence for this type of syllabification attested in the IE languages,
and it is also quite unexpected from a typological point of view. In fact, as I show

11Ruijgh 1992:76.
Andrew Miles Byrd

in my 2015 book, the sequence *tetsio- could only have been syllabified as *tet.sio- in PIE, given the ban on Sonority Sequencing Principle (SSP) violations in word-medial codas, as expressed by the Maximum Syllable Template (MST).

(3) The MST = CCVCC.

The maximum PIE syllable consists of two Cs in the onset and two Cs in the coda. The onset may violate the SSP; the coda may not.

Thus, the forms *matsya-, *dikh.thjós, and the *-tuV- absolutes could only have been syllabified with complex onsets in the second syllable: *mat.sya-, *dik.h.thjós, etc. And since SL does not affect such forms, we cannot formulate SL as targeting $CU-$ sequences in final syllables, as Schindler has claimed. And since LL only affects the sequence $SCU-$ in final syllables in forms such as *djuh₁t ‘two’, SL and LL could not have been the same rule. Indeed, as Ryan Sandell reminds me, the two rules in question cannot be described as involving the same structural change, as LL is clearly sensitive to word boundaries, while SL is not.

With the rules now disentangled, we no longer have an explanation as to why LL existed in PIE, and we no longer understand the extent of its reach. And its similarity to SL still remains: if the two laws were not the same, then why do they appear to be so?

3 Lindeman’s Law: An alternative means to satisfy the Minimal Word Requirement

As suggested above, the haphazard appearance of Lindeman variants in the daughter languages may be due to the fact that, as in Sanskrit, LL was an optional process in PIE. Optional rules must have existed when PIE was spoken—such is the nature of human language (Anttila 2007, Hayes 2009:61, Coetzee and Pater 2011).¹²

¹²Note that it is not that two consonants were not allowed to be syllabified in a word-medial coda in PIE (cf. */jéygtron/ → *[jék], *[rom], ‘cord’ > Ved. yiktron); rather, while a number of complex word-final codas were possible in word-final position, many of these complex margins were banned word-medially. Thus, while *nélths ‘carried by vehicle’ contains a tripartite sequence *-tsth at word’s edge, no such sequence is reconstructable in word-medial position (*yékat.prom).

¹³Between any member of a syllable and the syllable peak only sounds of higher sonority rank are permitted” (Clements 1990:284).

¹⁴Byrd 2015:83-134. It is not just the case that we are unable to reconstruct SSP violations in word-medial positions in PIE; we may identify three separate phonological rules as being driven by such violations (Lex Schmidt-Hackstein [Hackstein 2002], the métron rule, and the deletion of *r in the derivative of *hök(t)thi, tī ’80’ in Indo-Iranian).

¹⁵Well-known examples of optional rules include coronal stop deletion in English (west(î) side), assibilation and apocope in Finnish (/lentä-i/ → lentsi, lentsi, lent, lents), and the deletion of dat.sg. -e in German (Diebe ~ Diëb ‘thief’).
Variant forms are commonplace within the reconstructed morphology; for instance, alongside the archaic acrostatic genitive singular *pēts ‘foot’ must have existed a morphologically renewed *pedós or *pedés ‘foot’ (> Lat. pedis, Gk. ποδ/ος, Skt. padāḥ, etc.). While variation is less commonly posited for the phonology, at least one optional rule can be reconstructed for the proto-language, monosyllabic lengthening (MSL), the process by which a vowel is lengthened in an underlyingly monomoraic monosyllabic word to create a bimoraic form at the surface.

MSL occurs in languages where there is a Minimal Word Requirement (MWR), which requires stress-bearing units to consist of at least two morae. Suggested by Hirt (1927-37:2.227) and discussed more recently in Kapović 2006 and Byrd 2015:113–7, it is clear that short and long variants existed for a number of core PIE words, including pronouns, conjunctions, and particles. Five such instances are cited in Table 4 below.

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Short Form</th>
<th>Attestations</th>
<th>Lengthened</th>
<th>Attestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘me (acc.)’</td>
<td>*me</td>
<td>Gk. ἐµέ</td>
<td>*mē</td>
<td>Skt. mā</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OIr. mé</td>
<td></td>
<td>Lat. mē-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goth. mi-k</td>
<td></td>
<td>Gaul. mi</td>
</tr>
<tr>
<td>‘now’</td>
<td>*nu</td>
<td>Skt. nū</td>
<td>*nū</td>
<td>Skt. nū</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OIr. nu, no</td>
<td></td>
<td>OCS ny-nē</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Latv. nu</td>
<td></td>
<td>Lith. nū-naï</td>
</tr>
<tr>
<td>‘you (nom.)’</td>
<td>*tu</td>
<td>Gk. σύ</td>
<td>*tū</td>
<td>Lat. tū</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Latv. tu</td>
<td></td>
<td>Hom.Gk. τόνη</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OE þu</td>
<td></td>
<td>OE þū</td>
</tr>
<tr>
<td>‘not’</td>
<td>*ne</td>
<td>Skt. nā</td>
<td>*nē</td>
<td>Lat. nē</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCS ne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘disjunctive’</td>
<td>*uê</td>
<td>Lat. -ve</td>
<td>*uê</td>
<td>Skt. vā</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skt. i-vā</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. MSL in Words of the Shape CV.

Following Sandell and Byrd in preparation, it appears likely that MSL occurred in forms of the shape CVC as well. Examples include (but are not limited to):

16It is quite common for languages to have short and long variants of function words (Spencer and Luís 2012:92–3), though the short variants are often reduced forms of the long ones (e.g. German dīu ~ do ‘you’, im ~ m ‘him [dat.sg.]’, Eng. wil ~ l ~ l ‘will’, end ~ n ‘and’). In PIE, the long forms are strengthened versions of the short forms.
Andrew Miles Byrd

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Short Form</th>
<th>Attestations</th>
<th>Lengthened</th>
<th>Attestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘on high’</td>
<td>*úd</td>
<td>Skt. úd</td>
<td>*úd</td>
<td>Eng. out</td>
</tr>
<tr>
<td>‘us’</td>
<td>*nōs</td>
<td>Skt. nōs</td>
<td>*nōs</td>
<td>Lat. nōs</td>
</tr>
<tr>
<td>‘up’</td>
<td>*ub</td>
<td>Lat. s-ub</td>
<td>*ub</td>
<td>OHG úf</td>
</tr>
<tr>
<td>‘poison’</td>
<td>*uīs-</td>
<td>Skt. viśī-</td>
<td>*uīs-</td>
<td>Av. vī</td>
</tr>
</tbody>
</table>

Table 5. MSL in Words of the Shape CVC.

The manifestation of MSL due to the MWR in a word of the shape CV is straightforward: /CVµ → [CVµσ] (CVC). But it is less obvious why a word of the shape CVC would exhibit vowel lengthening, as one would expect in a language where coda consonants were moraic (Byrd 2018:2067) that the sequence */CVσC/ would be realized as *[CVµσC], hence no lengthening. Unexpected lengthening of this type is found in a number of languages, including MHG (Seiler 2009), in which the words /glas/ ‘glass’, /tal/ ‘valley’, and /veg/ ‘way’ surface as [glaːs], [taːl], and [veːk], respectively. Monosyllabic lengthening in words of the shape CVC is typically attributed to word-final extrametricality, where the final consonant of a word is prosodically invisible, rendering that segment non-moraic (Gordon et al. 2010). It is for this reason that MSL also occurred in PIE words like */úd/ ‘on high’; the phonology viewed the words as containing only a single mora.

1. */úd/ ‘on high’ → *[uíµdia] → *[uíµdia]
2. */nōs/ ‘us’ → *[nôµsia] → *[nôµsia]
3. */úp/ ‘up’ → *[uíµbeta] → *[uíµbeta]
4. */uīs/ ‘poison’ → *[uíµsia] → *[uíµsia]

The Minimal Word Requirement in PIE: Monosyllabic Lengthening

The process of MSL in PIE reminds us of LL in three regards. First, both short- and long-vowel variants are reconstructable for the proto-language, making it likely that MSL was an optional rule in late PIE. Second, MSL takes forms that are underlyingly short and makes them into forms that are at the surface longer. Third, as Jared Klein reminds me, the distribution of the Rigvedic monosyllabic particle /nú/ ‘now’ echoes the position of Lindeman variants such as duvā-, as both occur with great frequency in line- and clause-initial position.18 When found in first position of a clause, /nú/ occurs in its lengthened form nú 65 times, versus a single nú in that position.

18There are of course other reflexes of MSL in the Rigveda, such as in the particles nú and sú, which are never
Motivating Lindeman’s Law

(Klein 2019:47). For Klein, the function of a fronted ni is to represent a “strong focalization of present time” and the “lengthening…in this position is a function of its strong focalizing value.” I suspect that in PIE, as in the Rigveda, the primary reason for the lengthening and fronting (if possible) of a number of monomoraic monosyllables was focalization.19

Should we follow Sandell and Byrd in preparation, as above, in reconstructing extrametricality for PIE, many of the forms which undergo LL begin as monomoraic and are derived into forms that are at the surface bimoraic. Of course, instead of vowel lengthening, we find vowel insertion, illustrated in (i) below.

(i) The Minimal Word Requirement in PIE: Lindeman’s Law

<table>
<thead>
<tr>
<th>Underlying Form</th>
<th>Extrametricality</th>
<th>MWR (LL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*/dúóh/ ‘two’</td>
<td>→ *[dúô(h)]_e</td>
<td>→ *[du]_e[yúô(ch)]_e</td>
</tr>
<tr>
<td>*/suós/ ‘one’s own’</td>
<td>→ *[suó(s)]_e</td>
<td>→ *[su]_e[yúô(s)]_e</td>
</tr>
<tr>
<td>*/túó/ ‘you (loc.sg.)’</td>
<td>→ *[túô(j)]_e</td>
<td>→ *[tu]_e[yúô(j)]_e</td>
</tr>
<tr>
<td>*/d^h^óh^s/ ‘yesterday’</td>
<td>→ *[d^h^óh^s]_e</td>
<td>→ *[d^h^óh]_e[yúô(s)]_e</td>
</tr>
</tbody>
</table>

We thus see that LL and MSL participate in a phonological conspiracy, both occurring to satisfy the MWR. To cite an example that is directly comparable to the one discussed above, in Chitonga (Mkochi 2009), a Bantu language spoken in the southern and western provinces of Zambia, one finds MSL in words that are of the shape CV (tw: ‘take’, pe: ‘get subdued’, ko: ‘catch’) and epenthesis in forms of the shape CCV (iswa ‘break!’, ilya ‘eat!’, ifwa ‘die!’). Vowel epenthesis occurs in roots with complex onsets in both Chitonga and PIE for the same reason, to satisfy the MWR and—along the way—also to satisfy the constraint *COMPLEXONSET (see Byrd 2015:197–200).

<table>
<thead>
<tr>
<th>[dúô(h)]_e</th>
<th>MWR</th>
<th>*COMPLEXONSET</th>
<th>DEF-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. [dúô(h)]_e</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. SUMER</td>
<td>[dúô(h)]_e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. [dúô(h)]_e</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. High Vowel Epenthesis in Lindeman’s Law.

fronted to clause-initial position as they are clitics. These long variants only surface when length is required by the meter (Klein 1982:1, 12).

19Of course, all of this falls within the natural, expected parameters of language, with the lengthened monosyllables and Lindeman varieties being what are traditionally called citation forms (Ladefoged and Johnson 2010:107), words which are uttered in isolation, which are topicalized or focalized, or which have been introduced into the discourse for the first time. One would also expect these lengthened variants to be prevalent within PIE motherese ‘Ní dúôô h_i (o)bili! ’Now take two!’ and *D^g^i^ë^ë^ë^ë ü ô t u ô h_i, o? ’Was that on you yesterday?’
Andrew Miles Byrd

Satisfying *COMPLEXOnset on the side directly parallels what occurs in Sievers’ Law, though there the trigger of resyllabification is motivated by the avoidance of a superheavy syllable (Byrd 2015:199), and not the avoidance of a light monosyllable. It is for this reason that SL and LL look so similar.20

<table>
<thead>
<tr>
<th></th>
<th>Dep(V)</th>
<th>#SUPERHEAVY</th>
<th>#FAITH(σ)</th>
<th>#COMPLEXOnset</th>
<th>No-Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7. High Vowel Epenthesis in Sievers’ Law.

A similar type of vowel epenthesis does not occur in forms such as */nós/ ‘us’ for two reasons. First, there is no complex onset to resolve, and second, vowel epenthesis would violate the constraint ONSET (for constraint ranking justification, see Byrd 2015:173):

<table>
<thead>
<tr>
<th></th>
<th>MWR</th>
<th>ONSET</th>
<th>Dep-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>

Table 8. The Derivation of */nos/.

20 A careful reader will perhaps note that the ranking MWR >> FAITH(σ) >> *COMPLEXOnset >> *Dep-V predicts *ðuₚₜʊₚₜₜₚₜₜₜₚₜₜₚₜₜₜ¢...
4 The loss of the MWR and the continuation of extrametricality

In this paper, I have shown that Lindeman’s Law was not the same phonological process as Sievers’ Law (as is commonly believed), but rather has much in common with another phonological process reconstructable for PIE, monosyllabic lengthening (MSL), in that both are optional means to satisfy the MINIMAL WORD REQUIREMENT. Given their optionality, it is likely that the forms reconstructable for late PIE reflect a stage at which the MWR had ceased to exist as a highly-ranked constraint within the proto-language, with MSL and LL thereby becoming moribund. However, as with the long variants created by MSL, Lindeman variants remained an optional pronunciation, although speakers no longer understood the original domain in which the rule of vowel epenthesis applied. It is in this way that speakers began to extend it to heavy monosyllables (e.g. dyám ‘sky (acc.sg.)’ → diýám) and to other sonorants, perhaps nasals first (if the long variant of ṇmno ‘earthling’ should be traced back to PIE), followed by liquids.

While the MWR appears to have disappeared in late PIE, there is no reason to believe the same to be true of extrametricality. As discussed in detail in Sandell and Byrd in preparation, there is a substantial amount of evidence that suggests that extrametricality was productive in the majority of ancient IE languages. Evidence includes: (1) the requirement of extrametrical consonants for a correct analysis of recessive accent in Attic-Ionic and Aeolic Greek (see Gunkel 2011:92, Gunkel 2014:323); (2) the non-application of Osthoff’s Law in final syllables closed by just a single consonant in Greek (Rix 1992:36), in Old Latin and South Picene (Weiss 2011:125), and in Old Germanic (cf. Ringe 2017:94); (3) the fact that /CVC/ does not satisfy the MWR, as seen in MHG, and in Old Germanic more generally (Seiler 2009); and (4) the existence of Kuiper’s Law in PIE (see Mayrhofer 1986:149, with references), the evidence for which comes from short scansion of vocatives to *ah₂-stems in the Rigveda, the short vowel vocative -a in Greek (e.g. sūdha ‘O nymph’), and the vocative -o (< *-a) in OCS (e.g. ženo ‘O woman’). Given that *-b₂ was not weight-bearing in word-final position, compensatory lengthening did not occur upon its later deletion.

For the time being, two matters must remain unsolved and unaddressed. First, we do not yet understand precisely how and why the MWR can be lost in a language. As a tentative suggestion, perhaps its loss is somehow connected to the shift from a stress-based language to a pitch-accent language, as is often assumed for the early prehistory of PIE. Or perhaps, as Ryan Sandell has suggested to me,²¹ the MWR was never lost in PIE, which would entail that LL and MSL were obligatory rules in the PIE grammar. For him, the apparent sporadic nature of the attestations found in the IE daughter may perhaps be attributed to the fact that “under given prosodic conditions (e.g. cliticization, but possibly other still unknown conditions) the MWR would not have been in force. Consequently, the forms for which we have both long

²¹P.c. 12 May 2018.
Andrew Miles Byrd

and short-vowel or LL and non-LL forms both existed under determinate conditions.” Further research is necessary to determine which view is preferable in light of the evidence given.

The second matter that needs to be addressed is the apparent overabundance of abstractness assumed for PIE, with the reconstruction of extrametrical segments in absolute word-final position alongside word-initial and word-final extrasyllabic consonants. What was the relationship between the two? Were extrasyllabic consonants a subtype of extrametrical consonants? In words such as *uékst ‘carried by vehicle’ (which, following Byrd 2015, contains two extrasyllabic consonants), were the extrasyllabic consonants *-st both extrametrical, or was only the final segment non-moraic? Or are these abstract categories independent of one another? While no immediate answers present themselves, both of these problems will be handled in much greater detail in Sandell and Byrd in preparation.

References

Motivating Lindeman’s Law

Kapović, Mate. 2006. “Reconstruction of Balto-Slavic personal pronouns, with emphasis on accentuation.” Ph.D. dissertation, University of Zagreb.
Andrew Miles Byrd